Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263873

RESUMO

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Receptores Depuradores Classe B/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução
2.
Biosens Bioelectron ; 195: 113647, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583103

RESUMO

The rapid spread of COVID-19 including recent emergence of new variants with its extreme range of pathologies create an urgent need to develop a versatile sensor for a rapid, precise, and highly sensitive detection of SARS-CoV-2. Herein, we report a microcantilever-based optical detection of SARS-CoV-2 antigenic proteins in just few minutes with high specificity by employing fluidic-atomic force microscopy (f-AFM) mediated nanomechanical deflection method. The corresponding antibodies against the target antigens were first grafted on the gold-coated microcantilever surface pre-functionalized with EDC-NHS chemistry for a suitable antibody-antigen interaction. Rapid detection of SARS-CoV-2 nucleocapsid (N) and spike (S1) receptor binding domain (RBD) proteins was first demonstrated at a clinically relevant concentration down to 1 ng/mL (33 pM) by real-time monitoring of nanomechanical signal induced by antibody-antigen interaction. More importantly, we further show high specific detection of antigens with nasopharyngeal swab specimens from patients pre-determined with qRT-PCR. The results take less than 5 min (swab to signal ≤5 min) and exhibit high selectivity and analytical sensitivity (LoD: 100 copies/ ml; 0.71 ng/ml of N protein). These findings demonstrate potential for nanomechanical signal transduction towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants.


Assuntos
Técnicas Biossensoriais , COVID-19 , Ouro , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
3.
J Am Heart Assoc ; 10(17): e019890, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472376

RESUMO

Background ApoAI (apolipoproteins AI) and apoAII (apolipoprotein AII) are structural and functional proteins of high-density lipoproteins (HDL) which undergo post-translational modifications at specific residues, creating distinct proteoforms. While specific post-translational modifications have been reported to alter apolipoprotein function, the full spectrum of apoAI and apoAII proteoforms and their associations with cardiometabolic phenotype remains unknown. Herein, we comprehensively characterize apoAI and apoAII proteoforms detectable in serum and their post-translational modifications and quantify their associations with cardiometabolic health indices. Methods and Results Using top-down proteomics (mass-spectrometric analysis of intact proteins), we analyzed paired serum samples from 150 CARDIA (Coronary Artery Risk Development in Young Adults) study participants from year 20 and 25 exams. Measuring 15 apoAI and 9 apoAII proteoforms, 6 of which carried novel post-translational modifications, we quantified associations between percent proteoform abundance and key cardiometabolic indices. Canonical (unmodified) apoAI had inverse associations with HDL cholesterol and HDL-cholesterol efflux, and positive associations with obesity indices (body mass index, waist circumference), and triglycerides, whereas glycated apoAI showed positive associations with serum glucose and diabetes mellitus. Fatty-acid‒modified ApoAI proteoforms had positive associations with HDL cholesterol and efflux, and inverse associations with obesity indices and triglycerides. Truncated and dimerized proteoforms of apoAII were associated with HDL cholesterol (positively) and obesity indices (inversely). Several proteoforms had no significant associations with phenotype. Conclusions Associations between apoAI and AII and cardiometabolic indices are proteoform-specific. These results provide "proof-of-concept" that precise chemical characterization of human apolipoproteins will yield improved insights into the complex pathways through which proteins signify and mediate health and disease.


Assuntos
Apolipoproteína A-II , Apolipoproteína A-I , Doenças Cardiovasculares , Adulto , Apolipoproteína A-I/sangue , Apolipoproteína A-II/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , HDL-Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/epidemiologia , Processamento de Proteína Pós-Traducional , Proteômica , Triglicerídeos/sangue
4.
Ocul Surf ; 21: 19-26, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894397

RESUMO

Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.


Assuntos
Lipoproteínas HDL , Nanopartículas Metálicas , Colesterol , Ouro
5.
J Biol Chem ; 296: 100100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208460

RESUMO

Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.


Assuntos
Colesterol/metabolismo , Ferroptose , Linfoma/metabolismo , Animais , Colesterol/genética , Humanos , Células Jurkat , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Células U937
6.
ACS Sens ; 5(10): 3019-3024, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32643928

RESUMO

High-density lipoproteins (HDL) are constitutionally dynamic nanoparticles that circulate in the blood. The biological functions of HDLs are impacted by interchangeable surface chemical components, like cholesterol and HDL-associated proteins. Current methods to quantify the chemical constituents of HDL are largely restricted to clinical or academic laboratories and require expensive instrumentation, and there is no commonality to the techniques required to detect and quantify different analytes (e.g., cholesterol versus HDL-associated protein). To potentially facilitate and streamline the analysis of HDL composition, we hypothesized that mixing native HDLs with similarly sized gold nanoparticles whose surfaces are endowed with phospholipids, called complementary nanoparticle scaffolds (CNS), would enable interparticle exchange of surface components. Then, easy isolation of the newly formed particles could be accomplished using benchtop centrifugation for subsequent measurement of HDL components exchanged to the surface of the CNS. As proof-of-concept, data demonstrate that CNS incubated with only a few microliters of human serum rapidly (1 h) sequester cholesterol and HDL-associated proteins with direct correlation to native HDLs. As such, data show that the CNS assay is a single platform for rapid isolation and subsequent detection of the surface components of native HDLs.


Assuntos
Lipoproteínas HDL , Nanopartículas Metálicas , Colesterol , Ouro , Humanos
7.
Adv Ther (Weinh) ; 3(12)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33709017

RESUMO

microRNAs regulate numerous biological processes, making them potential therapeutic agents. Problems with delivery and stability of these molecules have limited their usefulness as treatments. We demonstrate that synthetic high-density lipoprotein nanoparticles (HDL NPs) topically applied to the intact ocular surface are taken up by epithelial and stromal cells. microRNAs complexed to HDL NPs (miR-HDL NPs) are similarly taken up by cells and tissues and retain biological activity. Topical treatment of diabetic mice with either HDL NPs or miR-HDL NPs significantly improved corneal re-epithelialization following wounding compared with controls. Mouse corneas with alkali burn-induced inflammation, topically treated with HDL NPs, displayed clinical, morphological and immunological improvement. These results should yield a novel HDL NP-based eye drop for patients with compromised wound healing ability (diabetics) and/or corneal inflammatory diseases (e.g. dry eye).

8.
J Extracell Vesicles ; 10(2): e12042, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33408816

RESUMO

Primary tumours can establish long-range communication with distant organs to transform them into fertile soil for circulating tumour cells to implant and proliferate, a process called pre-metastatic niche (PMN) formation. Tumour-derived extracellular vesicles (EV) are potent mediators of PMN formation due to their diverse complement of pro-malignant molecular cargo and their propensity to target specific cell types (Costa-Silva et al., 2015; Hoshino et al., 2015; Peinado et al., 2012; Peinado et al., 2017). While significant progress has been made to understand the mechanisms by which pro-metastatic EVs create tumour-favouring microenvironments at pre-metastatic organ sites, comparatively little attention has been paid to the factors intrinsic to recipient cells that may modify the extent to which pro-metastatic EV signalling is received and transduced. Here, we investigated the role of recipient cell cholesterol homeostasis in prostate cancer (PCa) EV-mediated signalling and metastasis. Using a bone metastatic model of enzalutamide-resistant PCa, we first characterized an axis of EV-mediated communication between PCa cells and bone marrow that is marked by in vitro and in vivo PCa EV uptake by bone marrow myeloid cells, activation of NF-κB signalling, enhanced osteoclast differentiation, and reduced myeloid thrombospondin-1 expression. We then employed a targeted, biomimetic approach to reduce myeloid cell cholesterol in vitro and in vivo prior to conditioning with PCa EVs. Reducing myeloid cell cholesterol prevented the uptake of PCa EVs by recipient myeloid cells, abolished NF-κB activity and osteoclast differentiation, stabilized thrombospondin-1 expression, and reduced metastatic burden by 77%. These results demonstrate that cholesterol homeostasis in bone marrow myeloid cells regulates pro-metastatic EV signalling and metastasis by acting as a gatekeeper for EV signal transduction.


Assuntos
Biomarcadores Tumorais/metabolismo , Células da Medula Óssea/patologia , Neoplasias Ósseas/secundário , Comunicação Celular , Colesterol/metabolismo , Vesículas Extracelulares/patologia , Neoplasias da Próstata/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Células da Medula Óssea/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proliferação de Células , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
ACS Nano ; 13(9): 10301-10311, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487458

RESUMO

B-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling via the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion. In addition, the MNS core can be utilized for its ability to generate heat under an external radio frequency field. The thermal activation of MNS can lead to both innate and adaptive antitumor immune responses by inducing the expression of heat shock proteins that lead to activation of antigen presenting cells and finally lymphocyte trafficking. In the present study, we demonstrate SR-B1 receptor mediated binding and cellular uptake of HDL-MNS and prevention of phagolysosome formation by transmission electron microscopy, fluorescence microscopy, and ICP-MS analysis. The combinational therapeutics of cholesterol depletion and thermal activation significantly improves therapeutic efficacy in SR-B1 expressing lymphoma cells. HDL-MNS reduces the T2 relaxation time under magnetic resonance imaging (MRI) more effectively compared with a commercially available contrast agent, and the specificity of HDL-MNS toward the SR-B1 receptor leads to differential contrast between SR-B1 positive and negative cells suggesting its utility in diagnostic imaging. Overall, we have demonstrated that HDL-MNSs have cell specific targeting efficiency, can modulate cholesterol efflux, can induce thermal activation mediated antitumor immune response, and possess high contrast under MRI, making it a promising theranostic platform in lymphoma.


Assuntos
Biomimética , Metabolismo dos Lipídeos , Linfoma de Células B/imunologia , Fenômenos Magnéticos , Nanoestruturas/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Endocitose , Imunomodulação , Ferro/metabolismo , Lipoproteínas HDL/química , Camundongos , Microscopia de Fluorescência , Nanoestruturas/ultraestrutura , Receptores Depuradores Classe B/metabolismo , Temperatura
10.
Expert Rev Anticancer Ther ; 19(6): 515-528, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31148521

RESUMO

Introduction: Significant clinical correlations have been observed between serum high-density lipoprotein (HDL) cholesterol and cancer risk, outcomes, and patient response to specific treatments. While the biological processes underlying these correlations remain unclear, evidence suggests that HDLs actively inhibit tumor progression through a variety of mechanisms. As a result, synthetic HDLs have emerged as attractive agents for targeted cancer therapy. Areas covered: We present a focused review of recent developments in the use of synthetic HDLs for cancer therapy, including roles in drug delivery, RNAi, monotherapy, and immunotherapy. In addition to historic references relevant to the field, we searched the following databases for recent articles published from January 1st, 2015 - May 1st, 2019: MEDLINE, Web of Science Core Collection, and Google Scholar. Expert opinion: Synthetic HDLs have already been used in human patients for cardiovascular disease, and have proven to be effective anticancer agents in pre-clinical testing, which should pave the way for future clinical trials in the setting of cancer. Given the growing notoriety of dysregulated cholesterol homeostasis as a key mechanism of cancer progression, and the immense success of synthetic HDLs in animal models, synthetic HDLs are well-poised to make significant strides toward the clinic as cancer therapy.


Assuntos
Lipoproteínas HDL/metabolismo , Nanopartículas , Neoplasias/terapia , Animais , Antineoplásicos/administração & dosagem , Progressão da Doença , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Interferência de RNA
11.
J Am Chem Soc ; 141(25): 9753-9757, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31177775

RESUMO

Synthetic high-density lipoprotein (HDL) mimics have emerged as promising therapeutic agents. However, approaches to date have been unable to reproduce key features of spherical HDLs, which are the most abundant human HDL species. Here, we report the synthesis and characterization of spherical HDL mimics using lipid-conjugated organic core scaffolds. The core design motif constrains and orients phospholipid geometry to facilitate the assembly of soft-core nanoparticles that are approximately 10 nm in diameter and resemble human HDLs in their size, shape, surface chemistry, composition, and protein secondary structure. These particles execute salient HDL functions, including efflux of cholesterol from macrophages, cholesterol delivery to hepatocytes, support lecithin:cholesterol acyltransferase activity, and suppress inflammation. These results represent a significant step toward a genuine functional mimic of human HDLs.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Materiais Biomiméticos/química , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Fosfatidiletanolaminas/química , Materiais Biomiméticos/síntese química , Colesterol/metabolismo , DNA/química , Portadores de Fármacos/síntese química , Ouro/química , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Lipoproteínas HDL/química , Lipossomos/química , Monócitos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo
12.
Oncoscience ; 5(5-6): 164-166, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30035178
13.
J Proteome Res ; 17(6): 2156-2164, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649363

RESUMO

Top-down proteomics (TDP) allows precise determination/characterization of the different proteoforms derived from the expression of a single gene. In this study, we targeted apolipoprotein A-I (ApoA-I), a mediator of high-density-lipoprotein cholesterol efflux (HDL-E), which is inversely associated with coronary heart disease risk. Absolute ApoA-I concentration and allelic variation only partially explain interindividual HDL-E variation. Therefore, we hypothesize that differences in HDL-E are associated with the abundances of different ApoA-I proteoforms. Here, we present a targeted TDP methodology to characterize ApoA-I proteoforms in serum samples and compare their abundances between individuals. We characterized 18 ApoA-I proteoforms using selected-ion monitoring coupled to electron-transfer dissociation mass spectrometry. We then compared the abundances of these proteoforms between two groups of four participants, representing the individuals with highest and lowest HDL-E values within the Chicago Healthy Aging Study ( n = 420). Six proteoforms showed significantly ( p < 0.0005) higher intensity in high HDL-E individuals: canonical ApoA-I [fold difference (fd) = 1.17], carboxymethylated ApoA-I (fd = 1.24) and, with highest difference, four fatty acylated forms: palmitoylated (fd = 2.16), oleoylated (fd = 2.08), arachidonoylated (fd = 2.31) and one bearing two modifications: palmitoylation and truncation (fd = 2.13). These results demonstrate translational potential for targeted TDP in revealing, with high sensitivity, associations between interindividual proteoform variation and physiological differences underlying disease risk.


Assuntos
Apolipoproteína A-I/sangue , Lipoproteínas HDL/metabolismo , Proteômica/métodos , Idoso , Transporte Biológico , Colesterol/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Medicina de Precisão , Processamento de Proteína Pós-Traducional , Manejo de Espécimes
14.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29440125

RESUMO

Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents.


Assuntos
Proteína Huntingtina/genética , Neoplasias/genética , RNA Interferente Pequeno/farmacologia , Repetições de Trinucleotídeos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Fases de Leitura Aberta , RNA Interferente Pequeno/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 10(8): 6904-6916, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29385802

RESUMO

Disorders of blood vessels cause a range of severe health problems. As a powerful vasodilator and cellular second messenger, nitric oxide (NO) is known to have beneficial vascular functions. However, NO typically has a short half-life and is not specifically targeted. On the other hand, high-density lipoproteins (HDLs) are targeted natural nanoparticles (NPs) that transport cholesterol in the systemic circulation and whose protective effects in vascular homeostasis overlap with those of NO. Evolving the AuNP-templated HDL-like nanoparticles (HDL NPs), a platform of bioinspired HDL, we set up a targeted biomimetic nanotherapy for vascular disease that combines the functions of NO and HDL. A synthetic S-nitrosylated (SNO) phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphonitrosothioethanol) was synthesized and assembled with S-containing phospholipids and the principal protein of HDL, apolipoprotein A-I, to construct NO-delivering HDL-like particles (SNO HDL NPs). SNO HDL NPs self-assemble under mild conditions similar to natural processes, avoiding the complex postassembly modification needed for most synthetic NO-release nanoparticles. In vitro data demonstrate that the SNO HDL NPs merge the functional properties of NO and HDL into a targeted nanocarrier. Also, SNO HDL NPs were demonstrated to reduce ischemia/reperfusion injury in vivo in a mouse kidney transplant model and atherosclerotic plaque burden in a mouse model of atherosclerosis. Thus, the synthesis of SNO HDL NPs provides not only a bioinspired nanotherapy for vascular disease but also a foundation to construct diversified multifunctional platforms based on HDL NPs in the future.


Assuntos
Nanopartículas , Animais , Aterosclerose , Biomimética , Lipoproteínas HDL , Camundongos , Óxido Nítrico
16.
Sci Rep ; 8(1): 1211, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352211

RESUMO

Medulloblastoma is the most common paediatric malignant brain cancer and there is a need for new targeted therapeutic approaches to more effectively treat these malignant tumours, which can be divided into four molecular subtypes. Here, we focus on targeting sonic hedgehog (SHH) subtype medulloblastoma, which accounts for approximately 25% of all cases. The SHH subtype relies upon cholesterol signalling for tumour growth and maintenance of tumour-initiating cancer stem cells (CSCs). To target cholesterol signalling, we employed biomimetic high-density lipoprotein nanoparticles (HDL NPs) which bind to the HDL receptor, scavenger receptor type B-1 (SCARB1), depriving cells of natural HDL and their cholesterol cargo. We demonstrate uptake of HDL NPs in SCARB1 expressing medulloblastoma cells and depletion of cholesterol levels in cancer cells. HDL NPs potently blocked proliferation of medulloblastoma cells, as well as hedgehog-driven Ewing sarcoma cells. Furthermore, HDL NPs disrupted colony formation in medulloblastoma and depleted CSC populations in medulloblastoma and Ewing sarcoma. Altogether, our findings provide proof of principle for the development of a novel targeted approach for the treatment of medulloblastoma using HDL NPs. These findings present HDL-mimetic nanoparticles as a promising therapy for sonic hedgehog (SHH) subtype medulloblastoma and possibly other hedgehog-driven cancers.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas Hedgehog/metabolismo , Lipoproteínas HDL/metabolismo , Meduloblastoma/metabolismo , Nanopartículas , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Colesterol/metabolismo , Perfilação da Expressão Gênica , Humanos , Lipoproteínas HDL/química , Meduloblastoma/genética , Nanopartículas/metabolismo , Ligação Proteica , Receptores de Lipoproteínas/metabolismo , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais
17.
Mol Cancer Ther ; 17(3): 686-697, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282300

RESUMO

Myeloid-derived suppressor cells (MDSC) are innate immune cells that potently inhibit T cells. In cancer, novel therapies aimed to activate T cells can be rendered ineffective due to the activity of MDSCs. Thus, targeted inhibition of MDSCs may greatly enhance T-cell-mediated antitumor immunity, but mechanisms remain obscure. Here we show, for the first time, that scavenger receptor type B-1 (SCARB1), a high-affinity receptor for spherical high-density lipoprotein (HDL), is expressed by MDSCs. Furthermore, we demonstrate that SCARB1 is specifically targeted by synthetic high-density lipoprotein-like nanoparticles (HDL NP), which reduce MDSC activity. Using in vitro T-cell proliferation assays, data show that HDL NPs specifically bind SCARB1 to inhibit MDSC activity. In murine cancer models, HDL NP treatment significantly reduces tumor growth, metastatic tumor burden, and increases survival due to enhanced adaptive immunity. Flow cytometry and IHC demonstrate that HDL NP-mediated suppression of MDSCs increased CD8+ T cells and reduced Treg cells in the metastatic tumor microenvironment. Using transgenic mice lacking SCARB1, in vivo data clearly show that the HDL NPs specifically target this receptor for suppressing MDSCs. Ultimately, our data provide a new mechanism and targeted therapy, HDL NPs, to modulate a critical innate immune cell checkpoint to enhance the immune response to cancer. Mol Cancer Ther; 17(3); 686-97. ©2017 AACR.


Assuntos
Lipoproteínas HDL/toxicidade , Células Supressoras Mieloides/efeitos dos fármacos , Nanopartículas/toxicidade , Neoplasias Experimentais/prevenção & controle , Receptores Depuradores Classe B/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Supressoras Mieloides/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Receptores Depuradores Classe B/genética , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
18.
Nat Commun ; 8(1): 1319, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29105655

RESUMO

Metastatic cancers produce exosomes that condition pre-metastatic niches in remote microenvironments to favor metastasis. In contrast, here we show that exosomes from poorly metastatic melanoma cells can potently inhibit metastasis to the lung. These "non-metastatic" exosomes stimulate an innate immune response through the expansion of Ly6Clow patrolling monocytes (PMo) in the bone marrow, which then cause cancer cell clearance at the pre-metastatic niche, via the recruitment of NK cells and TRAIL-dependent killing of melanoma cells by macrophages. These events require the induction of the Nr4a1 transcription factor and are dependent on pigment epithelium-derived factor (PEDF) on the outer surface of exosomes. Importantly, exosomes isolated from patients with non-metastatic primary melanomas have a similar ability to suppress lung metastasis. This study thus demonstrates that pre-metastatic tumors produce exosomes, which elicit a broad range of PMo-reliant innate immune responses via trigger(s) of immune surveillance, causing cancer cell clearance at the pre-metastatic niche.


Assuntos
Exossomos/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Monócitos/imunologia , Animais , Diferenciação Celular/imunologia , Proteínas do Olho/imunologia , Feminino , Humanos , Imunidade Inata , Vigilância Imunológica , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Macrófagos/imunologia , Macrófagos/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Monócitos/patologia , Fatores de Crescimento Neural/imunologia , Fagocitose/imunologia , Serpinas/imunologia , Microambiente Tumoral/imunologia
19.
Oncotarget ; 8(49): 84643-84658, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156673

RESUMO

The death receptor CD95/Fas can be activated by immune cells to kill cancer cells. shRNAs and siRNAs derived from CD95 or CD95 ligand (CD95L) are highly toxic to most cancer cells. We recently found that these sh/siRNAs kill cancer cells in the absence of the target by targeting the 3'UTRs of critical survival genes through canonical RNAi. We have named this unique form of off-target effect DISE (for death induced by survival gene elimination). DISE preferentially kills transformed cells and cancer stem cells. We demonstrate that DISE induction occurs in cancer cells in vivo after introducing a lentiviral CD95L derived shRNA (shL3) into HeyA8 ovarian cancer cells grown as i.p. xenografts in mice, when compared to a scrambled shRNA. To demonstrate the possibility of therapeutically inducing DISE, we coupled siRNAs to templated lipoprotein nanoparticles (TLP). In vitro, TLPs loaded with a CD95L derived siRNA (siL3) selectively silenced a biosensor comprised of Venus and CD95L ORF and killed ovarian cancer cells. In vivo, two siRNA-TLPs (siL2-TLP and siL3-TLP) reduced tumor growth similarly as observed for cells expressing the shL3 vector. These data suggest that it is possible to kill ovarian cancer cells in vivo via DISE induction using siRNA-TLPs.

20.
Mol Pharm ; 14(11): 4042-4051, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28933554

RESUMO

Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.


Assuntos
Linfoma Difuso de Grandes Células B/metabolismo , Nanopartículas/química , Receptores de Antígenos de Linfócitos B/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Receptores de Lipoproteínas/metabolismo , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...